

MRC Protein Phosphorylation and Ubiquitylation Unit

Cells, energy control and Parkinson's: the role of PINK1 and Parkin

Miratul Muqit

Dundee Research Interest Group (DRIG) meeting 26th June 2018

"Before concluding these pages, it may be proper to observe once more, that an important object proposed to be obtained by them is, the leading of the attention of those who humanely employ anatomical examination in detecting the causes and nature of the diseases, particularly to this malady. By their benevolent labours, its real nature may be ascertained and appropriate modes of relief, or even of cure pointed out."

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text>

AN

Theodor Schwann – basic unit of all living tissues are cells

Schwann, 'Mikroskopische Untersuchungen', 1839

Pathological insights: Trettiakof 1919

Konstantin Tretiakoff

First to recognise degeneration within substantia nigra

C. Trettiakof. Contribution a l'Etude de la Anatomie Pathologique du Locus Niger. These de Paris. No. 293

Basic components of cells

Energy producers of the cells - mitochondria

Energy production in the mitochondria

Impact of damage on Energy production

Damage to mitochondria can lead to Parkinson's

THE CASE OF THE FROZEN ADDICTS

How the solution of an extraordinary medical mystery spawned a revolution in the understanding and treasment of Barkinson's disease

J. WILLIAM LANGSTON, M.D. AND JON PALFREMAN

Damage to mitochondria can lead to Parkinson's – How?

Genetic Breakthrough in 2004

Genetic Breakthrough in 2004

PINK1 is a sensor of mitochondrial damage

Pathway inactive

PINK1 is a sensor of mitochondrial damage

Pathway Active

PINK1 pathway Active

PINK1 pathway Active

Elimination of bad mitochondria

PINK1 pathway Inactive

Pathway inactive

Showing our findings are important for Parkinson'

Brain cells in a dish

Mouse models

Human Patients

Targeting the PINK1 pathway in Parkinson's

Developing Biomarkers of PINK1 pathway

Cerebrospinal fluid drawn from between two vertebrae

MITOCHONDRIAL STRESS

Parkinson's disease

Antibody Probes

In collaboration with Sandy Chou, Abcam

Acknowledgments

Odetta Antico Michael Stevens Ilaria Volpi Ainslie Taylor Theresita Joseph

Cloning and Molecular Biology – Mark Peggie and team Protein Expression/ Antibody Generation – James Hastie, Hilary McLauchlan and team Ubiquitin protein production – Axel Knebel and team Tissue Culture – Laura Fin and team DNA sequencing – Nick Helps and team Mass spectrometry – David Campbell, Bob Gourlay, Joby Varghese

Fellow

A PROPERTY AND A DESCRIPTION OF THE

